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Redundant Persistent Acyclic Formations for Vision-Based Control of
Distributed Multi-Agent Formations

Alyxander Burns⇤, Peter Klemperer†, Jaemarie Solyst‡, Audrey St. John§

Abstract

We present theoretical and experimental results on the
application of acyclic persistent leader-follower forma-
tions with redundancy to a distributed multi-agent sys-
tem. A leader-follower formation is defined on a set of
point agents constrained by fixed distance assignments
for following other agents; if satisfying the constraints
results in the distances between all pairs of agents being
maintained, the formation is persistent. The (generic)
persistence of a leader-follower formation in 2D is com-
binatorially characterized by a directed graph with one
“leader” vertex having no out-edges, one “co-leader”
vertex having exactly one out-edge (to the leader), all
other “follower” vertices having out-degree at least 2,
and an underlying minimally rigid (undirected) graph.

We provide theoretical results for three types of per-
sistent formations with redundancy, including an induc-
tive construction for generating redundantly persistent
graphs (the strongest notion of redundancy). We ap-
ply redundant persistence to multi-robot systems as a
mechanism for incorporating robustness to sensing fail-
ure. In particular, we implement the approach on a
vision-based distributed multi-robot platform. Using
acyclic orientations permits a simple, “wave”-based con-
trol that converges reliably, and redundant edges allow
the control to recover e↵ectively from sensing limita-
tions (e.g., a camera’s limited field of view or obstruc-
tion by another robot).

1 Introduction

In applications such as collective transport [12], a for-
mation of robots may be required to maintain a single
“shape” or rigid structure. We focus on leader-follower
formations in the plane, where two pre-specified agents
determine the formation’s trajectory (e.g., via teleop-
eration): a leader with two degrees of freedom and a
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Figure 1: From left to right is a schematic of bottom
view of robot (horizontal field of view is 62.2�), 3D
model of robot design, picture taken of built robot with-
out cover to show hardware inside.

co-leader1 with one degree of freedom. The remaining
robots are called followers and compute their trajecto-
ries independently using local geometric conditions.

By modeling these geometric constraints as directed
edges, persistence theory [8] can be applied to dis-
tributed multi-agent systems as a way of controlling
a leader-follower formation so that it maintains global
structure through local sensing and actuation. Persis-
tence theory is analogous to rigidity theory, where the
combinatorics of bar-and-joint frameworks (defined by
fixed distance constraints between points) can capture
the rigidity or flexibility of the system. When applied to
a multi-agent formation, where agents are modeled as
points, the source of a directed edge can be assigned the
sensing and maintenance of the distance constraint,
reducing overall sensor and actuation costs.

Sensing on a mobile robotic platform is susceptible to
hardware and environmental limitations (for instance,
a hardware component may fail or the field of view of
a camera may be obstructed or limited by lighting).
To address this aspect, we build robustness into the
theoretical model using constraint redundancy. While
a combinatorial characterization and an e�cient algo-
rithm for redundantly rigid 2D bar-and-joint frame-
works are both known, we are only aware of redun-
dancy in persistence being studied in our previous work
[3]. Furthermore, the behavior of persistent formations
does not always mimic the corresponding notions in
rigid frameworks. Particularly relevant to redundancy
is that, while adding an edge to a rigid framework main-
tains rigidity, adding an edge to a persistent for-
mation may cause persistence to be lost [8]. In [3],
it was shown that every rigidity circuit can be oriented

1The term “first-follower” is also used in related work.
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to create a persistent leader-follower formation (with a
weak notion of redundancy), and a subsequent recursive
algorithm was presented.

In a distributed system, each mobile robot must have
a control scheme for actuation that satisfies its set of
assigned distance constraints. We restrict our focus to
acyclic persistent formations, captured by a directed
graph with no cycles; a simple, “wave”-based control
approach can then be used to ensure reliable conver-
gence.

1.1 Related work.

Results from (undirected) rigidity theory have been ap-
plied in similar domains, including network localization
[4], decentralized approaches to rigid network construc-
tions [16, 19] and control of multi-robot formations in
3D [20]. A necessary condition for global rigidity is re-
dundant rigidity (drop any edge and remain rigid), lead-
ing to the adaptation of the “pebble game” algorithm
of [11] to a distributed network. In [5], redundancy is
noted as an obstacle to formation control due to real-
world sensing inconsistencies.

A directed application of rigidity theory to leader-
follower architectures appeared in [5], with persistence
theory developed in [8]. A combinatorial characteri-
zation for acyclic persistent leader-follower formations
was given in [8], along with an inductive “vertex addi-
tion” construction technique; the vertex addition step
is also known in the rigidity theoretic literature as a 0-
extension or a Henneberg I step. The work of [15] uses
this construction approach to generate minimally persis-
tent leader-follower formations; a control scheme based
on “target points” is proposed and analyzed through
simulation and proof of convergence. Given an undi-
rected graph, the existence of an acyclic persistent ori-
entation can be checked in polynomial time [1].

We apply the concept of “cooperative positioning,”
where follower robots sense other neighboring robots,
which are momentarily stationary and serve as “land-
marks” [13] for pose calculations. Distance or range
measurements can be sensed via an external motion cap-
ture system [20], a combination of GPS and computer
vision [9], or even infrared [10, 18]. We use popular on-
board computer vision techniques for sensing local in-
formation, allowing a completely distributed approach.

This paper builds upon the work of [3]; to the best
of our knowledge, the use of redundancy as a tool
for robustness had not been studied previously in the
literature2. In this work, we address additional no-
tions of redundancy in persistence, left open in [3],
and demonstrate the application on a vision-based dis-
tributed multi-robot platform (the simulation results of
[3] relied on idealized beacon sensors).

2Research in this area is scattered, appearing in various math-
ematical, computational and engineering settings.

Figure 2: (a) A rigid graph that is not minimally rigid
(removing a dashed edge does not result in a flexible
framework) and is not redundantly rigid (removing a
solid edge does result in a flexible framework). The
K4 subgraph is a rigidity circuit, as removing any edge
results in a minimally rigid graph. (b) The complete
bipartite graph K3,4 is a rigidity circuit.

1.2 Contributions.

We provide theoretical and applied results for acyclic re-
dundant persistence. Analogous to rigidity circuits, we
define a persistence circuit to be a directed graph such
that the removal of any edge results in a minimally per-
sistent graph. We give an algorithm for constructing a
persistence circuit from a rigidity circuit before proving
that a persistence circuit cannot be a leader-follower
formation. By relaxing the notion of redundancy to
sets of redundant edges (where any edge in the set may
be dropped without impacting persistence), the work
of [3] gives an algorithm for constructing a persistent
leader-follower formation from a rigidity circuit. In this
paper, we show that not every rigidity circuit has an
acyclic persistent leader-follower formation. Finally, we
work with a strong notion of redundancy by defining re-
dundantly persistent leader-follower formations, where
almost any edge can be dropped without losing persis-
tence, and give an inductive construction algorithm.

We conclude by applying the theoretical framework
to a homogeneous formation of non-holonomic (di↵er-
ential drive) robots, each equipped with a single cam-
era for sensing (see Figure 1). We provide experimental
results that validate the ability for a fully distributed
multi-robot formation to move and converge to a global
structure, where redundancy provides robustness in the
presence of limited sensing capabilities.

2 Preliminaries

Our work relies on persistence theory [8] and rigidity
theory (see, e.g., [7, 17]). For containment, we give a
high-level overview of the relevant concepts here.

2.1 Rigidity theory

Let G = (V, E) be an undirected graph with n ver-
tices and ` : E ! R an assignment of distances (or
lengths) to each edge; we refer to (G, `) as a (bar-and-
joint) framework. If p 2 (R2)n assigns positions to each
vertex such that the distance constraints are satisfied,
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(a) An acyclic persistent
formation with redundancy;
any edge from vertex 4 can
be dropped without losing
persistence.
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(b) Without an edge, the
formation from 3a is mini-
mally persistent; its acyclic-
ity permits an ordering with
3 waves: ({1}, {2}, {3,4}).
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(c) Dropping a di↵erent edge
gives a di↵erent minimally
persistent formation with an
ordering requiring 4 waves:
({1}, {2}, {3},{4}).
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(d) The underlying (rigid)
graph remains the same, but
reversing edge 43 in the for-
mation from 3c results in a
formation that is not persis-
tent.

Figure 3: Examples of persistent and not persistent graphs on 4 vertices.

i.e., ||p(i) � p(j)|| = l(ij)2 for each edge ij 2 E, we
refer to p as a realization of the framework (G, `). A
graph is said to be (generically3) rigid if the distances
between all pairs of vertices is determined by the dis-
tances specified by edges; otherwise, it is flexible. A
graph is minimally rigid if the removal of any edge re-
sults in a flexible graph. Rigid graphs that are not min-
imally rigid include redundant edges; such a graph is
called redundantly rigid if the removal of any edge re-
sults in a rigid graph. Minimality of redundant rigidity
is captured through the notion of a rigidity circuit (cor-
responding to the circuits of the rigidity matroid), a
rigid graph where removing any edge results in a mini-
mally rigid graph. Figure 2(a) depicts a rigid graph that
is neither minimally rigid nor redundantly rigid; remov-
ing any dashed edge maintains rigidity, but removing
a solid edge results in a flexible graph. The complete
graph K4 (dashed edges) and complete bipartite graph
K3,4 (also in Figure 2) are rigidity circuits.

Rigidity is defined via undirected graphs, so a
straightforward application to a multi-robot formation
could require both robots to sense and maintain the con-
straint dictated by an edge, incurring unnecessary sens-
ing, computation and actuation costs. Therefore, the
notion of persistence provides the analogous definition
in the directed setting: a directed graph is persistent if
each vertex can be assigned a position satisfying the dis-
tance constraints dictated by its out-going edges and the
pairwise distances between all vertices is determined.

Figure 3 highlights the distinct behavior of persis-
tence. The formations of Figures 3c and 3d share the
same underlying undirected (rigid) graph, but only the
formation of Figure 3c is persistent. The formation de-
picted in Figure 3d does not have the property that
every vertex can satisfy its assigned constraints. Intu-
itively, vertex 4 can move anywhere on a circle about

3The technical definition of genericity is outside of the scope
of this paper, but can be thought of as applying to “almost all”
realizations (i.e., those not in a special position).

vertex 1. Vertex 3 can find a position that satisfies two
of the three out-going constraints; however, for almost
all positions of vertex 4, such as the faded gray position,
the third constraint (red edge

�!
34) will be violated.

The formal definition of persistence requires technical
overhead that is outside the scope of this paper. Instead,
we will use the following characterization of persistence
from Theorem 3 of [8]: a directed graph is persistent
if and only if the underlying undirected graph of ev-
ery subgraph obtained by removing out-edges from ver-
tices with degree � 2 until all vertices have out-degree
 2 is rigid. In particular, a directed graph is min-
imally persistent (i.e., removing any constraint results
in a loss of persistence) if and only if its underlying undi-
rected graph is (minimally) rigid and every vertex has
out-degree at most 2. For example, the graph in Fig-
ure 3a is persistent; without an edge, as in Figures 3b
and 3c, it is minimally persistent. We are interested in
persistent leader-follower formations, where there is a
“leader” vertex with out-degree 0, a “co-leader” vertex
with out-degree 1 incident to the leader and all other
vertices having out-degree at least 2. Since the leader
and co-leader vertices have 3 degrees of freedom between
them, their positions can be used to determine the co-
ordinates of a persistent formation.

3 Results

We present results on three types of redundancy for
persistence theory, analogous to those found in rigidity
theory: (1) persistence circuits, (2) persistent forma-
tions with redundant edges, and (3) redundantly per-
sistent formations. Due to space constraints, we refer
the reader to the Appendix for proofs of the results (in-
cluding proofs of algorithm correctness) in this section.

3.1 Persistence circuits

In rigidity theory, minimal redundancy is captured by
rigidity circuits: removing any edge results in a mini-
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Figure 4: Construction of an acyclic redundantly persistent formation using Algorithm 2.

mally rigid graph. Analogously, we define a persistence
circuit to be a graph such that any edge’s removal gives
a minimally persistent graph.

A persistence circuit must have an underlying rigid-
ity circuit. Since rigidity circuits are well-understood
combinatorially and can be constructed inductively [2],
Algorithm 1 produces a persistence circuit from a rigid-
ity circuit. The (2, 3)-pebble game algorithm of [11, 14],
which appears as a subroutine, determines rigidity of
an undirected graph in quadratic time by constructing
a directed graph. If the input graph is rigid, the out-
put will be a directed graph with out-degree at most
2 and an underlying undirected minimally rigid graph,
i.e., a minimally persistent graph. Throughout the algo-
rithm, pebbles are used as a mechanism for controlling
the out-degree of a vertex; “pebble collection moves”
rely on depth-first search to re-orient directed edges.

Algorithm 1 Construction of a persistence circuit from
a rigidity circuit

Given a rigidity circuit G = (V, E):

1. Remove any edge e = ij 2 E.

2. Play the (2, 3)-pebble game on G0 = (V, E \ {e}) to
obtain a directed graph H.

3. If i has 0 pebbles, use pebble collection moves on
H to collect a single pebble on i.

4. Output the resulting directed graph with the addi-
tional edge

�!
ij .

While persistent, the class of graphs output by Algo-
rithm 1 are not leader-follower formations. In fact, we
can show the following:

Lemma 1 A persistent leader-follower formation can-
not be a persistence circuit.

Although we cannot have leader-follower formations
which are persistence circuits, [3] presents an algorithm
that orients a rigidity circuit to be a persistent leader-
follower formation with a more restricted notion of re-
dundancy. The graphs produced contain sets of redun-
dant edges; for example, the set of out-edges from vertex

4 in Figure 3a is redundant, as any edge may be dropped
without losing persistence.

3.2 Acyclic persistent formations with redundant
edge sets

We now restrict our focus to acyclic persistent forma-
tions, which permit a “wave”-based control approach to
satisfying the constraints. These are characterized com-
binatorially in Theorem 5 of [8]: an acyclic graph is per-
sistent if and only if it has (1) one “leader” vertex with
out-degree 0, (2) one “co-leader” vertex with out-degree
1, incident to the “leader,” (3) all other “follower” ver-
tices with out-degree 2 or larger. Then there exists
a Henneberg sequence for the vertices (corresponding
to an inductive “Henneberg”-type construction of the
underlying undirected rigid graph) such that each ver-
tex only has out-going edges to vertices earlier in the
sequence. The first two vertices in the sequence are
the leader and co-leader. We can group the subsequent
vertices into a sequence of k waves (w0, w1, . . . , wk�1),
where wi ⇢ V , such that the vertices in a wave only
have out-going edges to vertices in earlier waves. For
example, Figure 3b depicts a graph with 3 waves, while
Figure 3c requires 4 waves. We use the waves to con-
trol a formation so that it converges reliably, as shown
through the experimental results of Section 4.

Note that the algorithm from [3] can be used to
find an acyclic persistent leader-follower orientation of
a rigidity circuit, if one exists, by brute-force consider-
ation of the removal of every edge. This naturally leads
to the question of whether there are rigidity circuits for
which no acyclic persistent leader-follower orientations
exist. The following gives the answer in the negative.

Lemma 2 There are no acyclic leader-follower persis-
tent orientations of the rigidity circuit K3,4.

3.3 Inductive constructions for acyclic redundantly
persistent leader-follower formations

Following the results from the previous section, it is
of interest to understand properties of acyclic persis-
tent leader-follower formations. Theorem 5 of [8] im-
plies that the out-edges of any follower vertex with out-
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Figure 5: Screenshots of persistent formations taken from overhead during an experiment. The robot IDs and
specified distance constraint (in meters) label the graph.

degree larger than 2 form a redundant set of constraints:
any subset of edges such that at least 2 remain can be
dropped without losing persistence. For example, con-
sider the Butterfly graph of Figure 5d. Vertex 1 is the
leader, vertex 2 the co-leader and vertices 3, 4 and 5
are followers. Since vertices 4 and 5 have out-degree
3, their out-edge sets (dashed and dotted, respectively)
each form a redundant set; any out-edge can be dropped
from either set without losing persistence.

Algorithm 2 constructs graphs that are acyclic per-
sistent leader-follower formations which satisfy a ver-
sion of the (strong) notion of being redundantly persis-
tent. We define this notion in the context of an acyclic
leader-follower formation, which always contains a base
triangle, so we do not require redundancy within it. Let
G = (V, E) be an acyclic persistent leader-follower for-
mation and vL, vC , v3, . . . , v|V | be a Henneberg ordering
for G; let Eb = {���!vCvL, ��!v3vL, ��!v3vC} be the base triangle
edge set. We call G redundantly persistent if the re-
moval of any edge e not in the base triangle results in a
persistent graph. We extend the trilateration approach
of [4] to persistence to inductively construct acyclic re-
dundantly persistent leader-follower formations. Refer
to Figure 4 for an example run of the construction. Note
that any set of vertices can be chosen in Step 2(b); the
choice could be random or constrained by additional cri-
teria (such as visibility determined by the geometry of
a formation).

4 Application to multi-robot formations

Acyclic persistent leader-follower formations can be con-
trolled with reliable convergence by having each wave
(in order) sense and satisfy constraints; after the final
wave is completed, the resulting positions form a real-
ization for the underlying framework. We validate this
approach through experiments on four acyclic leader-
follower formations with varying levels of redundancy,
depicted in Figure 5. The persistent graphs are overlaid
on the multi-robot formation, with distances (in me-
ters) labeling the edges. We chose these formations to
analyze the impact of both combinatorial and geometric
properties.

Algorithm 2 Inductive construction of a redundantly
persistent acyclic formation

1. Initialize a set of vertices V = {vL, vC} and a set
of edges A = {���!vCvL}

2. For i 2 [3..n]:

(a) If i = 3, add edges ��!vivL and ��!vivC to A

(b) Else select a set V 0 ✓ V of at least 3 distinct

vertices and add edges
��!
viv0, for all v0 2 V 0, to

A

(c) Add vi to V

3. Output the directed graph H = (V, A)

The Rectangle formation is minimally persistent,
composed of four robots geometrically positioned at the
corners of a rectangle; the two robots (vertices 3 and 4)
are constrained to follow leader vertex 1 and co-leader
vertex 2. The addition of edge

�!
43 gives the Kite forma-

tion, where robot 4 has a set of 3 redundant out-edges;
any edge may be lost without impacting the persistence
of the formation. The Star formation is persistent with
the out-edges of vertex 5 forming a redundant set; any
pair of out-edges may be dropped without impacting
persistence. Note that the Star formation is not redun-
dantly persistent, as dropping an out-edge from vertex
4 will result in the loss of persistence. Finally, the But-
terfly formation, produced by Algorithm 2 on 5 vertices,
is redundantly persistent.

In all formations, vertices 1 and 2 are the leader and
co-leader, together determining the global positioning of
the formation. For ease of control, we simplify the im-
plementation using a single leader robot platform con-
taining the points for the leader and co-leader and use
the same predetermined path for the leader throughout
our experiments. Followers sense their positions relative
to neighbors using a dictionary of OpenCV-Aruco [6]
computer vision markers. When redundant edge sets
are present, the follower has a prioritized list of target
pairs to use for constraint maintenance. This results in a
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(a) Rectangle Formation (b) Kite Formation (c) Star Formation (d) Butterfly Formation

Figure 6: Scatter plots illustrating the tracks of each robot for each of four formations. We outline the convex hull
(cyan) of each formation during every tenth measurement to emphasize the formation.

more robust multi-agent system than using a minimally
persistent formation, as the formation can recover from
sensing failure, e.g., due to environmental factors, such
as lighting, or occlusion of targets by other robots or
objects. Given the relative positions of two targets, the
follower computes a point satisfying both constraints
(choosing the closer point of intersection of the two cor-
responding circles) and moves directly to that position.
We refer the reader to the Appendix for more details on
the hardware setup and wave-based control approach.

4.1 Experimental results

An overhead camera was used to obtain the coordinates
of each robot for analysis. Figure 6 illustrates the move-
ment tracks of the robots in each of the tested forma-
tions. Note that, for the Butterfly formation, the initial
sharp turn of the leader caused Robot ID-5 to move out
of the view of the overhead camera. We overlay the con-
vex hull at timed intervals to highlight the maintenance
of the overall structure.

Formation From To Robot 1 To Robot 2 To Robot 3

Rectangle
Robot 3 0.012±0.020, 0.168 0.004±0.019, 0.136 NA
Robot 4 0.009±0.012  0.163 0.005±0.012, 0.166 (-0.027±0.009  0.057)

Kite A
Robot 3 0.005±0.008  0.142 -0.001±0.008  0.097 NA
Robot 4 0.005±0.012  0.130 -0.001±0.013, 0.122 -0.020±0.010  0.145

Kite B
Robot 3 0.008±0.015, 0.161 0.004±0.019  0.230 NA
Robot 4 0.007±0.014  0.149 0.001±0.013  0.194 -0.018±0.018  0.139

Kite C
Robot 3 0.005±0.019 0.136 -0.002±0.018  0.142 NA
Robot 4 0.007±0.028  0.181 -0.014±0.032  0.206 0.004±0.025  0.132

Table 1: Constraint accuracy for four formations: the
Rectangle formation and three variations of Kite.

For the Rectangle and Kite formations, Table 1 pro-
vides more precise validation of constraint maintenance.
Since the Kite formation has a set of redundant edges
from vertex 4, we ran 3 experiments, varying the pri-
ority list of pairs of vertices to follow: Kite A used
({1,2},{1,3},{2,3}), Kite B used ({1,3},{2,3},{1,2}) and
Kite C used ({2,3},{1,3},{1,2}). The results were com-

piled by calculating the mean error for each pair-wise
constraint within each formation, then calculating the
minimum, mean and maximum of those means; they
are formatted as: mean error during camera wave (m)
±standard deviation  max error from constraint. The
maximum single-wave leader movement is 0.112 m and
10 degrees, which a↵ects the maximum error from con-
straint throughout the movement waves. The results
in parentheses were not directly controlled, but instead
maintained by the formation. Additional results and
data may be found in the Appendix.

5 Remarks

Rigidity and persistence theory are typically applied as
static analysis tools, but control of a multi-agent mobile
formation must include approaches for dynamic move-
ment. By working with acyclic formations, we are able
to exploit Henneberg sequences (developed primarily as
a tool for inductive proof techniques) to implement a
wave-based control scheme with reliable convergence.

Performing experiments through a low-cost hardware
platform can give insight into the challenges to creat-
ing a robust control for multi-robot formations; popu-
lar vision-based sensing is susceptible to geometric and
environmental factors, including viewing angle, lighting
and occlusion. Our results confirmed the robustness
brought to the system through the incorporation of re-
dundancy in the theoretical model, allowing the control
to recover from sensing loss.

While redundancy in rigidity theory is well-
understood, the analogous concepts in persistence the-
ory have not been well-studied. Our results reveal dis-
tinct behaviors of redundancy in the directed graphs of
persistence theory that do not arise in the undirected
graphs of rigidity theory.

We are grateful to the anonymous reviewers for their detailed
and helpful comments.
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Appendix

5.1 Proofs for theoretical results

We include here the proofs for correctness of Algorithm 1,
Lemma 1, Lemma 2 and Algorithm 2.

Proof. [of correctness of Algorithm 1] Let H = (V, A) be
the output of Algorithm 1. By construction and Invariant
(1) of Lemma 10 of [14] (for any vertex v, the sum of the
number of pebbles on v and the out-degree of v is 2), H
has either 1 vertex with out-degree 0 or 2 vertices with out-
degree 1; all other vertices have out-degree 2. We show that
H is a persistence circuit. Let e 2 A and J = (V, A\e). Then
J either has (1) 3 vertices with out-degree 1, and all other
vertices with out-degree 2; or (2) 1 vertex with out-degree
0, 1 vertex with out-degree 1, and all others with out-degree
2. Since the underlying (undirected) graph of H is a rigidity
circuit, the underlying graph of J is minimally rigid. Thus,
by Theorem 3 of [8], J is minimally persistent and H is a
persistence circuit. ⇤

Proof. [of Lemma 1] Let H = (V, A) be a persistent leader-
follower formation with vC , vL the leader and co-leader ver-
tices having out-degree 0 and 1, respectively. Then there
must be exactly one vertex x with out-degree 3 and all other
vertices with out-degree 2. Assume, for a contradiction, that
H is a persistence circuit; since the underlying graph of H
must be a rigidity circuit, |V | � 4. Let y 2 V be a ver-
tex with out-degree 2 and e = �!yz be one of the out-going
edges. By assumption, J = (V, A \ e) is minimally persis-
tent and its underlying graph is minimally rigid. Since x has
out-degree 3, dropping any out-going edge must result in a
persistent graph J 0 by Theorem 3 of [8]. However, the un-
derlying graph of J becomes flexible after the removal of any
edge, so J 0 cannot be persistent, giving the contradiction.

⇤

Proof. [of Lemma 2] Consider any persistent leader-follower
orientation G = (U, V, E) of K3,4, where |U | = 3 and |V | =
4 are disjoint vertex sets. We show it must have a cycle.
Suppose, for a contradiction, it is acyclic. Since K3,4 is
a rigidity circuit, |E| = 2n � 2 edges, there must be one
vertex vL with out-degree 0, one vertex vC with out-degree
1, one vertex x with out-degree 3 and all other vertices with
out-degree 2. Since G is an acyclic persistent orientation,
there exists an ordering of vertices vL, vC , v3, . . . , v7 such
that the out-edges of each vi are directed to vertices with
smaller indices. Then x = v7 2 V and v3, . . . , v6 must have
out-degree 2. However, v6 is incident to 3 vertices of the
set {vL, vc, v3, . . . , v5} and must be oriented towards them;
thus, v6 has out-degree 3, giving the contradiction. ⇤

Proof. [of Algorithm 2] Let G be the output of an exe-
cution of Algorithm 2. By construction, G is an acyclic
graph with (1) one “leader” vertex with out-degree 0, (2)
one “co-leader” vertex with out-degree 1, incident to the
“leader,” (3) all other “follower” vertices with out-degree
3. By Theorem 5 of [8], G is persistent. Let e 62 Eb =
{
���!vCvL,��!v3vL,��!v3vC}; then e is an out-edge from a vertex of

degree 3. By Theorem 3 of [8], the graph obtained by remov-
ing e is persistent. Thus, G is redundantly persistent. ⇤

Formation {1,2} {1,3} {2,3} Search

Kite A 98% 0% 0% 2%
Kite B 0% 99% 1% 0%
Kite C 0% 76% 23% 1%

Star Robot 3 95% NA NA 5%
Star Robot 4 100% NA NA 0%
Star Robot 5 96% 0% 0% 4%

Butterfly Robot 3 100% NA NA 0%
Butterfly Robot 4 4% 71% < 1% 25%
Butterfly Robot 5 7% 1% 75% 17%

Table 2: Summary of the landmark-pair selections taken
by robots during experiments. Followers require two
landmarks and choose from a prioritized list of pairs
(column labels) when more are available; the top prior-
ity pair is boldface in each row.

5.2 Experimental details

This section contains a more detailed description of our ex-
perimental setup as well as additional data and analysis.

Setup. Figure 5 provides a depiction of the hardware
design. Robots are based on a Pololu Romi4 wheeled
di↵erential-drive chassis and electronics fitted within a oc-
tagon camera target body. The leader is fitted with two
camera targets 30 cm apart, centered over the Romi Chas-
sis. On-board computation is provided by a Raspberry Pi
version 3 with connected Raspberry Pi Camera (v2, 8 MP
version). These robots are relatively low-cost, with a total
bill-of-materials under $200 USD.

The robot shells are designed as an octagonal prism, with
2.7” edges, and 2.3” square Aruco vision markers centered
within each face; a unique marker was assigned to each
robot, allowing it to be used as an identifier. We chose 8
sides as it experimentally produced the best results. Shells
with fewer sides were more susceptible to marker identifica-
tion loss due to viewing angle or occlusion factors. Using
more sides (while keeping the overall shell dimensions con-
stant) forced a decrease in the size of the markers, resulting
in marker recognition loss susceptible to distance factors; the
octagonal prism allowed recognition up to 3 meters away.

Formation control. The overall movement of the for-
mation is dictated by the leader robot; individual follower
robots move to maintain their specified constraints. By
working with acyclic persistent formations, we can use a sim-
ple “wave” control that converges reliably. Robots only move
during their assigned waves, with the specific wave assigned
to a robot using a Henneberg ordering for the formation.
Each wave ends only when all robots assigned to that wave
have finished moving and satisfied their constraints.

Separating the formation into waves creates several ad-
vantages beyond reliable convergence: the landmarks (Aruco
markers) tracked by the followers are not moving, resulting
in improved camera accuracy, followers need only minimize

4Pololu Corporation: https://www.pololu.com/category/203/romi-
chassis-kits
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constraint deviation with their landmarks, and fewer robots
moving reduces the risk of collisions. However, the wave-
motion procedure su↵ers from the disadvantage that the
minimum deviation from the range-constraints is bounded
by the distance traveled by the leader, and the cascading
e↵ects as the following waves move increase the error.

Redundancy data and analysis. Table 2 summarizes
the landmark usage of each robot in determining move-
ment targets throughout 5 experiments on the formations
with redundancy: 3 with the Kite formation (varying the
top landmark-pair in the priority list), one for the Star
and one for the Butterfly formation. Each robot made ap-
proximately one-hundred movements, and the results are re-
ported as a percentage of total movements (including those
required rotate while searching for markers). Note that
sensing constraints play a role in the experiment for Kite
C, where (Robot 2,Robot 3) is the prioritized pair, but
(Robot 1,Robot 3) determines 76% of the movements. The
geometry of the formation places landmarks Robot 2 and
Robot 3 at the extreme opposite edges of Robot 4’s field-of-
vision, making them less likely to be viewed simultaneously.
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